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HOMOGENEOUS POLYNOMIAL IDENTITIES 

BY 

ALLAN BERELE 

A B S T R A C T  

PI-algebras are studied by attaching invariants to the homogeneous identities 
analogous to the invariants of the multilinear identities studied by Regev. Also, 
it is shown that every finitely generated PI-algebra is polynomially bounded. 

I. Introduction 

This paper studies the sets of polynomials which occur as identities for a given 

algebra. Let  A be a PI-algebra defined over the field of characteristic zero, F ;  let 

F(Xl, x2," �9 ") = F ( X )  be the free associative algebra over F in a countable set X ;  

let O C F ( X )  be the set of polynomials which vanish on A ; and let V, C_ F(x )  be 

the set of multilinear, homogeneous polynomials of degree n in x l , ' " , x , .  

Regev has defined two sets of invariants of Q : c, (A)  and X, (A). c, (A)  = the 

dimension of the F-vector  space V , / V ,  O Q and ) , ( A ) = t h e  character of 

V, /V,  n Q considered as an FS,-module.  The study of these invariants has 

yielded a number of results; for an account of them, see [1]. 

Here this technique is modified slightly. Instead of considering V,, multilinear 

polynomials in n variables, we consider W, which will consist of homogeneous 

polynomials of degree n in a fixed finite set of variables. Working by analogy to 

the multilinear invariants, we describe the dimension of W, /W,  O Q and its 

character as a GL(k)-module.  We also investigate the codimensions of Q in 

another family of spaces of homogeneous polynomials. If (a)  = (al, a 2 , ' . . ,  ak), 

set W~a~ = { f ( x l , . . . ,  xk) E F ( x l , ' . . ,  xk) I each monomial of f has degree a, in x,, 

i = 1,2, .  �9 k}, then set c(a)  = dim Wta~/Wt,~ O Q. One motivation for studying 

these spaces is that 

n =0  a l , ' " , a  k =0  
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The results are as follows: 

dim W./W. t') Q is bounded by a polynomial as a function of n (Corollary 

4.12). 

The S,-characters of V,/V, Cl O determine the GL(k)-characters of 

W,/IV. fq O for each k, and conversely, provided k -> n (Theorem 2.7). 

The GL(k)-characters of W,/W. f)O determine the c(a), and conversely 

(Theorem 3.3, Corollary 3.4). 

These results all have applications. Corollary 4.12 is used to prove that every 

finitely generated PI-algebra has polynomially bounded rate of growth (4.13). 

The proof of this result in Section 4 is self-contained. Corollary 3.4 is used along 

with a result of Formanek, Halpin, and Li to calculate the height two cocharacter 

for Q equal to the identities for 2 x 2 matrices. Theorem 2.7 is used to show that 

the set of characters Xs.(V,/V, N Q) is closed under the Kronecker product 

(2.8). 
Finally, in Section 5, using a theorem of Procesi we show that, if Q = the 

identities for r x r matrices, then dim W,/W, A O is bounded above and below 

by polynomials in n of degree r2(k -1). 
It gives me great pleasure to thank two people who were instrumental in 

bringing about this paper: my thesis advisor Professor Herstein who gave me 

support, guidance, and encouragement; also, Professor Regev for many helpful 

conversations and suggestions. In particular, it was on Professor Regev's advice 

that I considered W,/W, fq O and on the basis of his belief that I attempted to 

prove Corollary 4.12. Thanks are also due to the referee for a number of useful 

suggestions including the remark following Corollary 3.4. 

2. Relationship between S.-cocharacters and GL(k)-cocharacters of Q 

We will use some standard notations and identifications. First, V, the set of 

multilinear, homogeneous degree n polynomials in Xl," ", x. is identified with 

FS. via 
o-ES.=-x~,...x~, EV..  

In particular, V, may be regarded as an S, - S. bimodule. FS. acts on V, on the 

right by substitution and on the left by place permutation: 

,~f(x,,...,x.)=/(x~,,...,x~.), f ~  v., ~ S ~  

yl" ' "  y, cr = y~,...y~., y l . . . y ,  a monomial of V., o-E S,. 

Next, let V be an F-vector space with basis {xl, ' '  ", xk}. Then W,, or simply W, 

the set of all homogeneous degree n polynomials in xl," �9 ", xk may be identified 
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with V e". The space W has a well known GL(k)-S. structure. In terms of 

polynomials, the action W ~ FS. ---* W may be regarded as an action of FS. on 

W by place permutation or, identifying FS. with V., as W substituting into 17. : 

y~" �9 �9 y . cr  = y ~ , . .  �9 y . . ,  y~" " y .  a m o n o m i a l  o f  W, r E S. ; 

y , ' "  y. /(x~,." " , xk )= / (y , ,  . .  ",y.),  y , . "  y. a monomialof  W, [ E  I7.. 

We will assume that the reader is familiar with the representation theory of S, 

and GL(k)  as they relate to I7. and W. The facts may be found in [3] or [7]. 

The span of GL(k)  in EndF (W, W), which is the same as the centralizer of FS, 

in EndF(W, W), will be written B(n, k) or simply B. The set of partitions of n is 

denoted Par(n), and for A ~ Par(n) the corresponding S,-character is denoted 

X~. The set of partitions of n of height =< k is denoted Ak (n) and for h E At (n) 

the corresponding GL(n)-character is denoted ~b~. 

Since Q is closed under substitution, the following is trivial: 

LEMMA 2.1. (a) FS.(Q n V.)C_ Q o 17,, 

(b) W(O N V.)C_ O o W, 

(c) GL(k) (Q O W)c_ Q o W. 

If w = y ~ " .  y, E W is a monomial, let R = R(w)  = {tr E S, [ wtr = w} and let 

s = s ( w ) =  ERtr E FS,. Lemma 2.2 is an important technicality. It is really a 

theorem about specialization and linearization. 

LEMMA 2.2. Bw = Ws. 

PROOF. Fi rs t  

(2.2.1) ws = w ~. cr = E wcr = I R [ w 
R R 

by definition of R. So, 

1 W =-~]WSE Ws. 

Since 1 E B, Bw C_ Bws C_ Ws. 

Now, assume B w ~  Ws. Since W is completely reducible as a B-module, 

it can be decomposed into a direct sum of submodules W = Ws G W, = 

Bw ~) W~ ~ W2. Let 7r : W ~ W2 be the projection map. 7r E EndB (W, W), so 

zr can be realized by some a ~ FS,, i.e., ~r(v) = va for all v ~ W. Let T be a left 

transversal for R in S, and let a = Y~ a~tr. Then 
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0 = , , ( w ) =  wa = 5'. 2 2 
�9 E T  p E R  

The w7 are linearly independent, so 

(2.2.2) ~ ix, = 0 for each ~'. 
t r E R *  

Finally, we calculate r 

Sn 

which is zero by (2.2.2). But r 0 gives a contradiction. 

COROLLARY 2.3. Let a E V,, w E W a monomial, and s = s ( w ) .  Then 

wa E Q N W i~ and only i[ sa E Q N Vn. 

PROOF. If s a E Q ,  w s a E Q  by 2.lb. But w s = [ R I w  by 2.2.1, so 

JR I wa E Q, and wa ~ Q. Conversely, if wa E O, choose V with dimension n. 

By Theorem 2.2, B(n,  n)w = Ws, and this s is independent of k. So, there is a 

b E B ( n , n ) ,  b w = ( x l . . . x , ) s  and x , . . . x , s = i m a g e  of s under the identity 

substitution which equals s. By 2.1c, bwa E Q, so sa E O. 

COROLLARY 2.4. With notation as in 2.3, wa = 0 i[ and only i[ sa = O. 

PROOF. This is Corollary 2.3 in the case of O = 0. 

Remark 2.5 is a well known fact. It says that, over an infinite field, T-ideals are 

homogeneous. 

REMARK 2.5. Let w, be a set of monomials in W with distinct multi-degrees, 

i.e., w~FS, fq wjFS, = 0 if i #  j. If a~ E V, and X w~a~ E Q, then w~a~ E O for 

each i. 

LEMMA 2.6. I[ V. = ( V ,  fq Q )@ I, is a direct sum o[ FS:modules,  then as 

GL(k )-modules W = ( W  fq Q ) @  WIn. 

PROOF. Since 1 E V , ,  W = W ( V ,  N Q ) + W L .  By 2.1b, W ( V ,  AQ)C_ 

W tq Q. Next we claim that Win fq Q = 0. Assume not. Since FS, I, = L,  there is 

a sum X w~a~ E Q, a~ E L, w, as in 2.5. By 2.5, there is a 0 # w~a~ E Q. However, 

by Corollaries 2.3 and 2.4, 0 # sa~ E Q for appropriate s E FS,. But, sat E 

Q A I. = 0, a contradiction. 
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Now, W(V. AQ)C_(WAQ)  has trivial intersection with WI., so 

W(V. A Q ) ~ W I .  = w is a direct sum decomposition. Finally, W =  

w(v .  n O ) ~  wh c_(w. n O ) ~  w h c  w. 

Theorem 2.7 is the main result of this section. 

THEOREM 2.7. I`f 

and i/ 

X ~Par(n) 

x ~ ( w / w  n O) = ~, m'~4~ 
hEAk(n) 

then m '~ = m~ for  each ~t E Ak (n ). 

PROOF. Since FS~ is semisimple, V. can be written V. = (V. n O)GE~FS, e~, 
where the e~ are minimal idempotents on standard tableaux, and the number of 

tableaux of shape ~ is m~, for each )t. By Lemma 2.6, 

W = ( W O  O ) q) ~ WFS, e, = ( w n  Q ) Q) ~ We, 

the sum being over those e, on diagrams of height _-< k because of the 

FS.-structure of W. So XCL~k)(W/W n Q) = XCL~)(E) Wei)= E~EAk~.)m~b~. 

REMARK. The S.-character of Vn/Vn n Q always determines the GL(k)- 

character of IV,/W, n Q. The GL(k)-character of IV./W. n Q determines the 

Sn-character of V,/Vn n Q only when k => n and otherwise gives only partial 

information. 

COROLLARY 2.8. X, (A) ~ Xm (A) >= X"§ (A), the inequality being com- 
ponentwise. 

PROOF. In the construction of W. = V | choose dim V = k -> n + m, and let 

W. =J~ ~ ( Q  n w.), w,. =J~ ~)(Q n w,~), and W,.§ = J,§ ~ ) ( w n  Q.§ 

wo§ = wo | w .  = (L | J . ) @ ( L  |  n w . ) )  

G((o n w . ) |  n w . ) |  n wo)). 

The operation @ in W corresponds to multiplication of polynomials, so each of 

the last three summands is contained in O O IV...,. Therefore, there is an 

injection J.+,. --> J. | J,., and the corollary follows from Theorem 2.7 and the 

relationship between @ on GL(k)-characters and ~ on S.-characters. 
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COROLLARY 2.9. height(x, (A))  + height(xm (A)) _-_ height(x, +,, (A)). 

PROOF. Follows from the Lit t lewood-Richardson rule and Corollary 2.8. 

3. Cocharacters and Poincar~ series 

With notation as in Section 2, there is another set of invariants which may be 

attached to the set of identities Q. Since Q n F ( x l , . . . , x k )  is a homogeneous 

ideal of F(x~ , . . . , xk ) ,  the quotient is multigraded by degree. If c ( a ) = t h e  

dimension of the part of F ( X l , . " , X k ) / Q  nF(Xl,.'',xk) with degree ( a ) =  

(a 1,-- ", ak), then the formal power series Y-t~)=~,....,a~)c (a)t~ . . . .  t~,~ is called the 

Poincar6 series for F(x~, . .  " ,xk)/F(x~, ' '  ",XE)N Q, and the numbers c(a)  are 

called the Poincar6 coefficients. More formally, if w E W, is a monomial with 

degree (a~,-. ",ak), then c( (a~ , . . . , ak ) )=  dim wFS,/wFS.  O Q. In this section 

we will show that the Poincar6 coefficients c (a)  determine and are determined 

by the multiplicities in the cocharacter m~, as defined in Theorem 2.7. 

One trivial observation which will be needed is that the numbers c (a)  depend 

only on the numbers a i , - -  -, a~ and not on their order. In particular, once c(a)  is 

determined for all (a)  = (a~,. �9 ", ak) with a~ _--- a2 => �9 �9 �9 ---- ak it is known for all 

(a). So, we will concentrate on c(A), A ~ Par(n). 

LEMMA 3.1. If  A,  B C V, are S,-modules, and if A O B  =O, and w is a 

monomial of W, then wA n wB = O. 

PROOF. Assume not. Then we can choose 0 ~  wa = wb for some a E A ,  

b ~ B. Let s = s (w). By CoroIlary 2.4, sa ~ O, and since w (a - b) = 0, s (a - b) = 

0 and sa = sb. But then sa E A O B = 0, a contradiction. 

One more preliminary is needed. It can be found in ([7], 26.3(i)). 

LEMMA 3.2. Let e ~ FS. be a minimal idempotent gotten from a tableau of 

shape A, and let w E W be a monomial with degree (a~, . . . ,ak) .  Then 

dimF(wFs~e) = the number of semistandard tableaux of shape A and type 

(al , '"  ", ak). 

Now, for each ;t,/~ E Par(n),  let c ~  = the number of semistandard tableaux 

of type A and shape/x, sometimes called the Kostka numbers. Consider ~ = c (A) 

and  rfi = m(/z)  as vectors in a I Par(n)l-dimensional vector space, and T = 

(Ol~Ap.)A,p.EPar(n) as a linear transformation on that space. 

THEOREM 3.3. e = Trh, i.e., for all A E P a r ( n )  C(A )= ~,~eP~r(,)Cta~,m~.. 



264 A. BERELE Isr. J. Math. 

The matrix T is invertible and the inverse can be computed explicitly (see [7]). 

Let S --(/3~) be the inverse matrix. 

COROLLARY 3.4. ffl = S~, i.e., c(A )= ~.,~par(.)fl~,m,. 

PROOF OF 3.3. As in the proof of Theorem 2.7, write Vn = Q, @/ ,  as 

FS.-modules, On = Q n V~ and I = @ FSnei. Then wV~ = W<a) = wQ. @ win 

by Lemma 3.1. Claim: w Q , = W t ~ ) O O .  By 2.1b, wQ, C_wt~)nQ. If the 

containment were proper, there would be a polynomial 0 # f E wI O Q. Write 

f = wi @ Q, i E I. By Lemma 2.3, s(w) i  E Q O I, and s i#  0 by Lemma 2.4, a 

contradiction. So W(,)= (W(,)n Q)@ w/,, and to complete the proof it suffices 

to calculate dim wI,. By Lemma 3.1, wL =@wFS~e,, so by Lemma 3.2, 

dim w/, = ~ . t t E P a r ( n ) c t A ~ m , .  

REMARK. It is easy to see that the GL(k)-cocharacters and Poincar6 series 

must be related. Let 

A = ".. , q , ' " , t k E F  
t~ 

be a diagonal matrix. Then the trace of A acting on W~/W~ N O is 

Y~,,+ ...... ~,c(a)t~ . . . .  t~, so in some sense, the Poincar6 series is the GL(k)- 

character of ( ~  Wn/Wn n O. 

An important Poincar6 series is calculated in [4]. Corollary 3.4 can be used to 

translate that result into a statement about cocharacters. Let O -- the identities 

for 2 x 2 matrices and let k = 2. Then Formanek, Halpin, and Li [4] show that as 

formal power series 

(FHL) ~ c(i , j ) t 's  j = ( 1 - s ) - ' ( 1 - t ) - l + s t ( 1 - s ) 2 ( 1 - t ) - 2 ( 1 - s t ) - ' .  
i,j =0  

THEOREM 3.5. If  Q = the identities of /:2, then m(p.o) = 1 and m(p.q) = 

(p - q + 1)q for q > O. 

PROOF. Expanding the right-hand side of (FHL) in a power series and 

equating coefficients gives that for i >j,  c( i , j )  = 1 + X L ~ o ( i  - k ) ( j  - k ) .  The 

determinantal form [7] and 3.4 imply that m(p,o)---c(p,O) and m(p,q) = 

c ( p , q ) - c ( p + l , q - 1 )  if q>O.  So m(e.o)= 1 and if q>O,  

) ( "  ) m(p,q)= 1+ ( p - k ) ( q - k ) -  l + ~ ( p + l - k ) ( q - l - k )  . 
k =0  k =0  

Shifting indices in the second expression and adding now gives the desired result. 



Vol. 42, 1982 HOMOGENEOUS POLYNOMIAL IDENTITIES 265 

4. Polynomial growth 

In this section we prove that  d i m ( W , / W ,  fq Q)  is bounded  by a polynomial  in 

n. The  proof  is combinator ia l ,  and much of the machinery  is similar to that  in the 

proof  of Shirshov's  theorem in [6]. 

A few more  definitions are needed.  Let  M = the free monoid  on {xl, x2," �9 �9 }, 

so that F ( X ) =  F[M].  M is graded by degree,  and the words of degree  n are 

denoted  by M, .  

NeXt, put  a partial o rder  on M as follows: if u,v  ~ M ,  u =x~,. . .xio,  

v = xj,. �9 �9 xjb then u < v if there is an 1 =< s =< a, b such that  il = j l , -  �9 is-~ = j,-1, 

and is < js. Note  that  two words are unre la ted  precisely when one is an initial 

segment  of the other.  So 1 is unrela ted to all o ther  words.  

LEMMA 4.1. (a) I f u < v ,  then uw < vq for all w, q E M .  

(b) I f  u < v, then wu < wv for all w E M. 

(c) I f  a > b are positive integers and x~ > u then x~u < x~v. 

The proof  is e lementary  and we omit  it. 

DEFINITIONS. U = U~U2" �9 �9 Uu E M is called a dominan t  factorizat ion of u of 

length d, or  a d - d o m i n a n t  factorizat ion of u, if for all 1 ~ ~r ~ S~, u > u~ �9 �9 �9 u~d. 

If u contains no subword  with a dominan t  factorizat ion of length d, u will be 

called d-clean.  If u contains a subword  u ' =  u , . . . u u  such that  u t >  u 2 > ' "  

> u~, u is d -bad ,  and if u is not  d-bad ,  it is d -good .  

For  example,  u = x3x2x~ is 3-bad and has a 3-dominant  factorization.  A more  

subtle example is u = x~x2x~x2x~. A 3-dominant  factorizat ion of u is given by 

u = (xlx2)(x~x2)(x~). u is 4-clean, but it is 3-good and 2-bad. 

LEMMA 4.2. I f  U is d-clean, it is d-good. 

PROOF. Assume u is d -bad .  Then  u has a subword  u '  which can be writ ten 

u ' = u ~ . . . u n ,  where  u ~ > u 2 > . . . > u a .  

CLAIM. U~ �9 �9 �9 Un is a d - d o m i n a n t  factorization.  Let  1 ~ ~ E Sd and let j be as 

small as possible subject  to tr( j)  ~ j. Then  tr( j)  > L otherwise  tr( j)  would be fixed 

by tr and so by tr 1, which is impossible, u ~ .  �9 �9 u~i = u, �9 �9 �9 uj mU~j. By hypothesis  

u~j < uj, so by 3.1, u ~ . .  �9 u~j < u ~ . . .  uj, and U~m..- u~d < u ~ . . .  un. 

This next lemma is analogous to Latyshev 's  l emma (cf. [10] theorem 1.3). 

Recall  that  Q contains the p roper  identi ty x , . . . x ~  - Z ~ , ~  o t , x~ . . . x~n .  

LEMMA 4.3. W , / W ,  N Q is spanned by the d-clean monomials of W, .  
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PROOF. First, since all words  of IV, have the same  degree ,  the part ial  o rder  

< is a total  order ,  and it is the lexicographical  order .  Now,  assume the l e m m a  is 

false, and let u be  the smallest  word  of IV, such that  u cannot  be  expressed  

m odu lo  Q fq IV, as a l inear  combina t ion  of d -c lean  monomia l s .  In par t icular ,  u 

itself is not  d-c lean,  so u can be wri t ten u = UoUl~ where  u l ' " u u  

> u~l �9 �9 �9 u~u for  all 1 ~ or ~ S~, hence  UoUl �9 �9 �9 ud§ > UoU~ �9 �9 �9 u~ud+~. Thus  

by the minimal i ty  of u, each UoU~. . .u~ua+~ is a l inear combina t ion  of 

d -c l ean  monomia l s .  But  Uo �9 �9 �9 ua+l -- ~ 1  ot,,UoU~l �9 �9 �9 U~,aua+l, since u~ �9 �9 �9 ud 

- Y.~,,~ a~u~ �9 �9 �9 u~u E Q, This gives a contradic t ion and comple tes  the proof .  

If A .  C M, ,  n = 0, 1, 2, .  �9 -, deno te  A = {A, }~, and call A a g raded  subset  of  

M. The  mos t  impor t an t  example  here  is the graded  subset  of M of d -c lean  

monomia l s .  To  s tudy it, a n u m b e r  of pre l iminar ies  are needed.  

LEMMA 4.4. Let  A ,  B, and  C be graded subsets of  M.  A s s u m e  

(1) for every w E A there exists w~ E B and w2 @ C such that w = w~ w2, and  

(2) I B. t, I col are each polynomial ly  bounded as functions of  n. 

Then t A ,  t is bounded by a polynomial  in n. 

PROOF. For  each w C A ,  choose  w~ and w2 as in (1). T h e n  A .  has a 

one - to -one  mapp ing  into I..J"k=oBk •  given by w ~ ( w ~ , w 2 ) .  The  m a p  is 

one - to -one  as it has a right inverse (w~, w : ) ~  w~w2. So 

IA. t -  -< U B~xC._~ <= IB, xCo-~l= IB, I'IC.-~I. 
k = 0  k = 0  k = 0  

By (2) we may  assume lB,  [_-__ g~(n), It.l= g = ( , ) f o r  all n, and we m a y  take  g~ 

and g2 to be increasing. So, 

I A ,  I<= ~ [Bk l[ C.-k  I<= ~ g~(k)g2(n - k )  <- ~ g~(n)g2(n) = (n + 1)g~(n)g2(n), 
k - 0  k = 0  k = 0  

which is a po lynomia l  in n. 

COROLLARY 4.5. Let  A ,  Btl), �9 �9 B ~'~ be graded subsets of  M such that 

(1) for every w E A  there exists w ~ B ~  . . . , w ~ E B  (') such that w =  

w~w2" " w,, and 

(2) each [B~)I is polynomial ly  bounded as a funct ion of  n. 

Then [ A ,  I is bounded by a polynomial  in n. 

PROOF. By induct ion on  t, the case of t = 2 is done  by L e m m a  3.4. A s s u m e  

that  the t h e o r e m  is t rue for  t - 1. Let t ing  C~ in the above  l e m m a  be the set  of  all 

p roducts  w2w3" �9 �9 w, of degree  n, where  w~ ~ B ~ i = 2 , .  �9 t, the p roo f  follows 

in a s t ra ight forward  manne r .  
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Let  M~ '" be the subset of  M~ consisting of words in {Xx," .,x~} in which the 

first letter is not  x~ and in which x~ never  occurs with exponent  > a. Let  M ~'~ be 

{M~ }n=l. Let  Y C be the set . . . .  the graded subset k.,= Mk.,  {x,x~[i 1,2, . ,k  1, 

b = 0 , 1 , . . . ,  a -  1}. It is obvious that  every word in M k'a can be writ ten in a 

unique way as a word  in the e lements  of Y, and that  [ Y [ =  a (k - 1). We order  

the elements  of  Y via x~x ~ < xj �9 x ~ if ei ther  i < j or  if i = j and b < c. Then  the 

elements  of Y can be enumera ted  y~ < y2 < "'" < y, tk-a). Define a Y-o rde r  on 

M k'", .~, similar to the original X - o r d e r ,  as follows: y~, �9 �9 �9 y~, ~ yj~ �9 �9 �9 y~ if ei ther  

i~ < ]~ or  if i~ = ]~,. �9 i~_1 = j,-~, i, < j,,  for some c. Clearly, L e m m a s  4.1 and 4.2 

cont inue to hold with "~ replacing < .  

Cor responding  to the two orders  for the e lements  of  M ~'~ there are two 

notions of dominan t  factorizat ion and of d -c lean  and d-bad .  We  now compare  

the two orders  and the cor responding  notions.  W h e n  the terms " d o m i n a n t  

factor izat ion"  etc. are used wi thout  qualification they will mean  with respect  

to < .  

LEMMA 4.6. (a) I f  w, w '  E M~ '~ and w ~ w' ,  then w < w'.  

(b) I f  w E M k'a is d-clean with respect to < ,  then it is d-clean with respect 

to <~. 

(c) I f  w ~ M k'~ has  a subword with a d - d o m i n a n t  factorization with respect to 

~ ,  and if e > O, then x~w has a subword with a (d + 1)-dominant  factorization 

with respect to < .  

REMARK. If we assume in (a) only that  w, w '  E M k'~ but not  that  they have 

the same degree,  we can conclude only that either w < w'  or that  w '  = wx~w", 

for some w" E M k'~ 

PROOF. Let  w = Y,l""Yi. ,  w ' =  Y, ," 'Yh.  Assume t is as small as possible 

such that i ,~ j,, so i, < j , .  Say y,, = x~x~, and yj, = xsx~. Let  Wo = y , , - ' '  y,,_, = 

y j . .  �9 yj,_~. 

Case 1: i < j .  Then  x~ < x  s, so WoX, < WoXj by 3.1b, so w < w '  by 3.1a. 

Case 2: i = j, b < c. First, we claim that  t :  m. For,  if t = m, deg -- degx n -- 

d e g w = d e g w o + d e g y , , = d e g w o + l + b .  On  the o ther  hand,  n = d e g w ' _ > -  

deg woys, = deg Wo + 1 + c. So b => c, a contradict ion.  Thus y~,§ : 1, therefore  

x~,-b>y, .... since xk domina tes  all e lements  of Y, so x~>x~y~,+,. Likewise 
c b W t wowixk> wox~xky~ .... and > w .  This proves (a), while (b) is an immedia te  

consequence  of (a) and the definitions. 

To  prove (c), we may assume by part  (a) that  w = wow1" �9 �9 w~w~§ such that  for 

all 1 ~ o" E Sd w~ . . .  wd => w ~ . . .  w~a. Let  w'  = XkWoW~"" w~ and consider  the 
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factorization w' = UlU 2 " " " Ud+l where ul = XkWo, u2 = wl, �9 �9 ', ud+~ = wa. Since xk 

( < ) dominates all elements of Y, this is clearly a (d + 1)-dominant factorization. 

DEFINmOr~S. Let  Z = { z ~ , . . . , z , }  be a finite totally ordered set, say 

z~< z z < ' "  < z,. M ( Z )  is the free monoid on Z, and M"' (Z)  is defined 

analogously to M k'a. Let  A.  (Z)  = Az (n, t, d)  = the set of d-clean words of 

M ( Z )  of length n, let A (Z)  = {A. (Z)}7=~. In order to study the rate of growth of 

A ,  (Z)  we need to define two auxiliary subsets of M(Z).  Let 

B . ( Z ) = B z ( n , t , d , a ) = { z ' , w E A , ( Z ) l e > O ,  w E M " ~  for n > 0  

and set Bo(Z)={1}.  Let  B ' ( Z ) = B ~ ( n , t , d , a ) = { z ~ w E A . ( Z ) l a > e > = O ,  
w ~ M 'a (Z)}. 

We will denote A,  (X) by A, ,  Ax  (n, k, d) by A (n, k, d), and A (X)  by A when 

there is no danger of ambiguity. Likewise for B and B' .  Of course, the 

cardinalities of these sets are independent of the choice of letters. 

LEMMA 4.7. (a) [A (n, k, 2) 1 is polynomially bounded in n for all fixed k. 
(b) IA (n, 1, d)[ is polynomially bounded in n for all fixed d. 

PROOF. For part (a) consider w = x~. �9 �9 x~. If some ij > is+~ then x~x~,+ 1 would 

be a 2-bad subword. So, if w E Ax  (n, k, 2) then i~ < i2 < �9 �9 �9 < i,. The converse is 

clear. Therefore,  [A(n,k,2)[ = the number of non-decreasing sequences of 

length n in 1 , . . . ,  k = (k§ < (k + n - 1) ~-1 which is polynomial in n. Part (b) is 

trivial, since A (n, 1, d) = {x ~} so [A (n, 1, d)[ = 1. 

The main theorem in this section is 

THEOREM 4.8. IA(n,k ,d) l  is bounded by a polynomial in n for all fixed k 
and d. 

The proof is by a double induction argument. So assume that 

(*) IA(n,k ,d ' ) l  is polynomially bounded in n for all 2<=d'<d, and then 

assume 

(**) [A (n, k' ,  d)l is polynomially bounded for all 1 < k ' <  k. 

LEMMA 4.9. Under the hypothesis (*) and (**), [Bn I is polynomially bounded 
in n, where B, = Bx (n, k, d, a), and a is arbitrary. 

PROOF. By definition, if v E B. (X) then v = x[w and w ~ M k'a (X). Since v 

is d-clean, Lemma 4.6(c) says that w = y , , . . ,  y~, is ( d -  1)-clean as a word in 

{Yl,"" ", Yat~-l)} = Y. Thus w E Ay(s, a(k - 1), d - 1) = A, (Y). By (*), [A, (Y)[ < 

f(s)<=f(n), since s _-< n and f is assumed to be monotonic. 
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Clearly [{x i} [ = 1 is polynomially bounded. Since every word in B,  (X) can be 

written as a product  of a word x ~ E {x ~' [ m > 0}, and w ~ A ,  ( Y )  and the two sets 

have polynomial bounds, by 4.4 lB, (X)[ is polynomially bounded. 

LEMMA 4.10. Under the hypothesis (*) and (**), B', is polynomiaUy bounded  

in n, where B "  = B ' x ( n , k , d , a  ), and  a is arbitrary. 

PROOF. Let  w = x i , . . . x , ,  E B ' , ( n , k , d , a )  and let O<-_j<=n be as small as 

possible such that ij = k. Let  wl = xi," �9 �9 xi~_l and w2 = x~ -. �9 xi,, formally allowing 

w l = l  if i i = l  and w2 = 1  if xk does not occur in w. Clearly, w l E  

A x ( j - l , k - l , d )  and w 2 E B ~ ( n - j - l , k , d , a )  and w = w l w 2 .  Since 

lAx (n, k - 1, d)[ and ]B, (n, k, d, a)[ are polynomially bounded (by (**) and 4.9, 

respectively) the proof now follows by 4.4. 

LEMMA 4.11. I[ W E A ( n , k , d ) ,  then w can be [actored as w = wows" . .  wa 

where w o E  B ' ( - , k , d , d )  and Wl, .  . ., w~ E B ( - , k , d , d ) .  

PROOF. First, we claim that if w E A,  then w has no more than d distinct 

exponents of x~ which are _--> d. For, if not, w = VoX~'vlx~ . . . .  x~,*,vd+~ where 

each of al , . . . ,a~+l>=d,  each of v ~ , . . . , v ~ l ,  and each of v ~ , ' " , v ~  fails to 

begin with x~. So xk > v ~ , ' " , v d .  Consider the subword of w , x ~ w x ~  . . . .  va 
d a2-d+l .~_ x d - l o  x a 3 - d + 2  and the factorization given by U~=XkwXk  , U2 k 2 k , U3 = 

x d - 2 1 j  x a a - d + 3  2 a Ic 3 E , " " ", U d - 2  X3k~Jd-2 x a d - l - 2  = ~ , ua-~ = x kva-~x k', ud = yd. Clearly 

u~ > �9 �9 �9 > ua, which yields a d-bad subword. This is a contradiction, since d-bad 

implies not d-clean, and so the first claim is proven. 

Now given w C A , ,  write w = WoX~'w~" .x~,w, where the a ~ , . . . , a ,  record 

all occurrences of xk to powers => d. So s < d. Also, each x~,w~ E B, since w~ 

does not begin with xk or contain xk to a power => d. So w E B'B~, and, since 

1 E  B, w E B ' B  ~. 

PROOF OF THEOREM 4.8. In order to prove the polynomial bound on 

IA (n, k, d)l use a double induction on k and d. Under  the induction hypothesis 

(*) and (**), Lemmas 4.10 and 4.11 give that IB(n ,  k, d, d)l and IB' (n ,  k, d, d)l 
are polynomially bounded. The theorem now follows from 4.5 and 4.12 with 

B ~  B' ,  B ~z) . . . . .  B td§ = B, and t = d + 1. 

COROLLARY 4.12. d i m ~ ( W , / W ,  tq Q )  is polynomially bounded in n. 

PROOF. Immediate from Theorem 4.8 and Lemma 4.3. 

This result has an application to growth rate of PI-algebras. The relevant 

definitions are to be found in [12]. 
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THEOREM 4.13. I rA  is a finitely generated PI-algebra, then A is polynomiaUy 
bounded. 

PROOF. Assume that A is generated by { a l , "  ",ak} and that A satisfies a 

monic PI of degree d. Let f (n)  be the growth function determined by 

{al," �9 ", ak}. Let An = spanF{ail �9 �9 �9 ai. [ 1 _--< i~, . . . ,  in ----< k}. In order to show that 

f (n)  is bounded by a polynomial, it suffices to show that dimFIA~ is bounded by a 

polynomial in n. 

There is a unique F-homomorphism ~ from W~ onto An given by 

xt'(xil �9 �9 �9 xj.) = a~l. �9 �9 ai.  Since the rank of Wn / Wn N Q is bounded by a polyno- 

mial, Theorem 4.13 will be proven if we show that Wn tq Q c ker W. But, this is 

immediate from the definition of Q;  if f(x~,. .  " ,xk)~Q,  f vanishes on all 

k-tuples from A, so xF(f) = f (a l , . . . ,  a~) = O. 

COROLLARY 4.14. If the cocharacter of Q is ~A~P,rtn)mAXA, then ~'Aktn)mA is 
polynomially bounded in n. 

PROOF. If the GL(k)  character ~A has degree hA then by Theorem 2.9, 

dimF ( Wn / Wn tq Q ) = XAkt~) mAh~ >---- E^~t,) mA. Since the former is polynomially 

bounded, the latter must be. 

COROLLARY 4.15. I[ Q contains a Capelli polynomial, then ~A~P~rt,)mA is 
polynomially bounded in n. 

PROOF. By [11], if Q contains a Capelli identity it contains all polynomials 

corresponding to idempotents on partitions of height greater than or equal to 

some fixed height. So, the cocharacter is contained in a strip and the result 
follows from Corollary 4.14. 

REMARKS. (1) Since the methods of this section are constructive, explicit 

polynomial bounds can be given in Theorems 4.8, and 4.12-4.15. We don't  do 

this, as the methods do not seem to be efficient. It should be noted, however, that 

all of these polynomials have degrees which are bounded by functions of k and 

d. 

(2) The converse of Theorem 4.13 is not true. For a counterexample let F be a 

field of characteristic zero and let G be a nilpotent group. Then F[G] will be 

polynomiaIly bounded, ([29, but it will not be a PI-algebra unless G is abelian.by 

finite ([9], 3.7). It would be interesting to know if there is a setting in which a 
converse of 4.13 holds. 

(3) Since EA~A~t~)mA is polynomially bounded, it is reasonable to conjecture 
that Xp~.n)mA is also polynomially bounded. 
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(4) dim W, / W, n Q will seldom be less than polynomial. More precisely, if Q 

does not contain X ~, then dim W, /W,  n Q will be bounded below by a 

polynomial of degree k -  1 in n. 

(5) Since Theorem 4.8 makes no reference to F, Corollary 4.12 and Theorem 

4.13 will hold whether or not F has characteristic zero. Moreover, if F is any 

commutative ring with unit, 4.i2 will hold with "dimension" replaced by 

"minimal number of generators" and 4.13 will hold for a suitable analogue of 

rate of growth. 

5. Applications to matrices 

In this last section we discuss the important special case in which Q = 

{ f (x l , "  ", xk) l f  an identity for E ,  the r • r matrices}. Then R = F(x l , "  .,x~)/O 
is a generic matrix algebra, i.e., R is isomorphic to F[X1, . . . ,X~] where 

Xt t.<~h l = l , - ,  k and where the " ") ~,)'q ]i,j = l , . . . . r ,  " ,  = y,j are commuting, independent 

indeterminants. W, / W, O Q corresponds to the space of homogeneous polyno- 

mials in X~,-.-,Xk of degree n. Moreover, if f ( n ) =  dim W. /W,  n Q, then 

g(n) = ZT=~f(i) is a growth function for R, since R is generated by X 1 , "  ",Xk. 

We now quote two relevant theorems, the first is due to Malliavin-Brameret [8] 

and the second to Procesi [5]. 

LEMMA 5.1. The rate of growth of R is [n'] where t is the transcendence degree 

of the quotient field of the center of R. 

LEMMA 5.2. The quotient field of the center of R has transcendence degree 
r2(k - 1) + 1 over F. 

So we get as immediate consequences: 

COROLLARY 5.3. If  m~ = the multiplicity of A in the (either homogeneous or 
multilinear, by 2.7) cocharacter of Q, and if h (A, k) = the degree of the irreducible 
GL(k)-character on A, then Y.~ <~, Z~ ~Ak<~) h (A, k )m~ is bounded above and below by 
polynomials in n of degree r~(k -  1)+ 1. 

PROOF. f ( i )  = dim W~/W~ n Q = Y'~Ak<,)h(A, k)m~, and g(n) = ET~f(i). 

COROLLARY 5.4. With notation as in 5.3, f (n)  "-- E~A~t.) h (A, k)mA is bounded 
above and below by polynomials in n of degree r2(k - 1). 

PROOF. First, we claim that f is a non-decreasing function. In order to show 

this it suffices to show that there is an injection W,/W,  n Q ~ w.+dw~+~ n Q. 

Let f(x~, . .  ",Xk)E W,, then x~f(x~,.. ",xk)E W,,+~, and x~f(x~, . . . ,x~)E Q if 
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and only if f ( x l , "  �9 ", xk)  E Q. This is by a well know n  theorem of A mi t su r  which 

states that if [ .  g E Q then ei ther  f ~ Q or g E Q. 

Now, assume by 5.3 that c ln  r2(k-l)§ < g ( n ) < = c 2 n  '2~k-1)+~. T h e n  clnr2tr-~)§ 

g ( n ) = E T ~ f ( i ) < - - _ E T = ~ f ( n )  = n f ( n ) .  So f ( n ) > = c , n  r2tk-~). O n  the o ther  hand,  

c2(2n )~(k-~)+~ >_ g ( 2 n  ) _ 2~ �9 2. . = = . . . , . . + , f ( n ) =  nf (n ) .  So f (n)>= 
2 r2(r-1)+l " C2• r2(k 1) 
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